← Back to all transforms
RandomShadow
Description
Simulates shadows for the image by reducing the brightness of the image in shadow regions. This transform adds realistic shadow effects to images, which can be useful for augmenting datasets for outdoor scene analysis, autonomous driving, or any computer vision task where shadows may be present. Args: shadow_roi (tuple[float, float, float, float]): Region of the image where shadows will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1]. Default: (0, 0.5, 1, 1). num_shadows_limit (tuple[int, int]): Lower and upper limits for the possible number of shadows. Default: (1, 2). shadow_dimension (int): Number of edges in the shadow polygons. Default: 5. shadow_intensity_range (tuple[float, float]): Range for the shadow intensity. Should be two float values between 0 and 1. Default: (0.5, 0.5). p (float): Probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 Number of channels: Any Note: - Shadows are created by generating random polygons within the specified ROI and reducing the brightness of the image in these areas. - The number of shadows, their shapes, and intensities can be randomized for variety. - This transform is particularly useful for: * Augmenting datasets for outdoor scene understanding * Improving robustness of object detection models to shadowed conditions * Simulating different lighting conditions in synthetic datasets Mathematical Formulation: For each shadow: 1. A polygon with `shadow_dimension` vertices is generated within the shadow ROI. 2. The shadow intensity a is randomly chosen from `shadow_intensity_range`. 3. For each pixel (x, y) within the polygon: new_pixel_value = original_pixel_value * (1 - a) Examples: >>> import numpy as np >>> import albumentations as A >>> image = np.random.randint(0, 256, [100, 100, 3], dtype=np.uint8) # Default usage >>> transform = A.RandomShadow(p=1.0) >>> shadowed_image = transform(image=image)["image"] # Custom shadow parameters >>> transform = A.RandomShadow( ... shadow_roi=(0.2, 0.2, 0.8, 0.8), ... num_shadows_limit=(2, 4), ... shadow_dimension=8, ... shadow_intensity_range=(0.3, 0.7), ... p=1.0 ... ) >>> shadowed_image = transform(image=image)["image"] # Combining with other transforms >>> transform = A.Compose([ ... A.RandomShadow(p=0.5), ... A.RandomBrightnessContrast(p=0.5), ... ]) >>> augmented_image = transform(image=image)["image"] References: - Shadow detection and removal: https://www.sciencedirect.com/science/article/pii/S1047320315002035 - Shadows in computer vision: https://en.wikipedia.org/wiki/Shadow_detection
Parameters
- shadow_roi: tuple[float, float, float, float] (default: (0, 0.5, 1, 1))
- num_shadows_limit: tuple[int, int] (default: (1, 2))
- shadow_dimension: int (default: 5)
- shadow_intensity_range: tuple[float, float] (default: (0.5, 0.5))
- p: float (default: 0.5)
Targets
- Image
Try it out
ⓘ
Original Image:
Result:
Transform result will appear here